

SEMESTER-IV

S. No.	Subject Code	Subject	L	T	P	Credit
1	PCC-CE402	Engineering Geology	1	0	2	2
2	PCC-CE403	Introduction to Fluid Mechanics	3	1	2	5
3	PCC-CE404	Surveying & Geomatics	3	1	2	5
4	PCC-CE405	Materials, Testing & Evaluation	1	1	2	3
5	PCC-CE406	Structural Engineering	3	1	2	5
6	PCC-CE407	Mechanics of Materials	3	0	0	3
Total						23

PCC-CE402	Engineering Geology	1L:0T:2P	2 credits
------------------	----------------------------	-----------------	------------------

The objective of this Course is to focus on the core activities of engineering geologists – site characterization and geologic hazard identification and mitigation. Through lectures, labs, and case study examination student will learn to couple geologic expertise with the engineering properties of rock and unconsolidated materials in the characterization of geologic sites for civil work projects and the quantification of processes such as rock slides, soil-slope stability, settlement, and liquefaction.

Engineering geology is an applied geology discipline that involves the collection, analysis, and interpretation of geological data and information required for the safe development of civil works. Engineering geology also includes the assessment and mitigation of geologic hazards such as earthquakes, landslides, flooding; the assessment of timber harvesting impacts; and groundwater remediation and resource evaluation. Engineering geologists are applied geoscientists with an awareness of engineering principles and practice—they are not engineers.

Syllabus:

Module 1: Introduction-Banches of geology useful to civil engineering, scope of geological studies in various civil engineering projects. Department dealing with this subject in India and their scope of work- GSI, Granite Dimension Stone Cell, NIRM. Mineralogy-Mineral, Origin and composition. Physical properties of minerals, susceptibility of minerals to alteration, basic of optical mineralogy, SEM, XRD., Rock forming minerals, megascopic identification of common primary & secondary minerals.

Module 2:Petrology-Rock forming processes. Specific gravity of rocks. Ternary diagram. Igneous petrology- Volcanic Phenomenon and different materials ejected by volcanoes. Types of volcanic eruption. Concept of Hot spring and Geysers.

Characteristics of different types of magma. Division of rock on the basis of depth of formation, and their characteristics. Chemical and Mineralogical Composition. Texture and its types. Various forms of rocks. IUGS Classification of phaneritic and volcanic rock. Field Classification chart. Structures. Classification of Igneous rocks on the basis of Chemical composition. Detailed study of Acidic Igneous rocks like Granite, Rhyolite or Tuff, Felsite, Pegmatite, Hornfels. Metamorphic Aureole, Kaolinization. Landform as Tors. Engineering aspect to granite. Basic Igneous rocks Like Gabbro, Dolerite, and Basalt. Engineering aspect to Basalt. Sedimentary petrology- mode of formation, Mineralogical Composition. Texture and its types, Structures, Gradation of Clastic rocks. Classification of sedimentary rocks and their characteristics. Detailed study of Conglomerate, Breccia, Sandstone, Mudstone and Shale, Limestone Metamorphic petrology- Agents and types of metamorphism, metamorphic grades, Mineralogical composition, structures & textures in metamorphic rocks. Important Distinguishing features of rocks as Rock cleavage, Schistosity, Foliation. Classification. Detailed study of Gneiss, Schist, Slate with engineering consideration.

Module3:Physical Geology- Weathering. Erosion and Denudation. Factors affecting weathering and product of weathering. Engineering consideration. Superficial deposits and its geotechnical importance: Water fall and Gorges, River meandering, Alluvium, Glacial deposits, Laterite (engineering aspects), Desert Landform, Loess, Residual deposits of Clay with flints, Solifluction deposits, mudflows, Coastal deposits.

*Module 4:*Strength Behavior of Rocks- Stress and Strain in rocks. Concept of Rock Deformation & Tectonics. Dip and Strike. Outcrop and width of outcrop. Inliers and Outliers. Main types of discontinuities according to size. Fold- Types and nomenclature, Criteria for theirrecognition in field. Faults: Classification, recognition in field, effects on outcrops. Joints & Unconformity; Types, Stresses responsible, geotechnical importance. Importance of structural elements in engineering operations. Consequences of failure as land sliding, Earthquake and Subsidence. Strength of Igneous rock structures.

Module 5:Geological Hazards- Rock Instability and Slope movement: Concept of sliding blocks. Different controlling factors. Instability in vertical rock structures and measures to prevent collapse. .Types of landslide. Prevention by surface drainage, slope reinforcement by Rock bolting and Rock anchoring, retaining wall, Slope treatment. Case study on black clay.Ground water: Factors controlling water bearing capacity of rock. Pervious & impervious rocks and ground water. Lowering of water table and Subsidence. Earthquake: Magnitude and intensity of earthquake. Seismic sea waves. Revelation from Seismic Records of structure of earth. Case Study on Elevation and Subsidence in Himalayan region in India. Seismic Zone inIndia.

Module 6:Rock masses as construction material: Definition of Rock masses. Main features constituting rock mass. Main features that affects the quality of rock engineering and design. Basic element and structures of rock those are relevant in civil engineering areas. Main types of works connected to rocks and rock masses. Important variables influencing rock properties and behavior such as Fresh rock Influence from some minerals. Effect of alteration and weathering. Measurement of velocity of sound in rock. Classification of Rock material strength. Core logging .Rock Quality Designation. Rock mass description.

Module 7:Geology of dam and reservoir site- Required geological consideration for selecting dam and reservoir site. Failure of Reservoir. Favorable & unfavorable conditions in different types of rocks in presence of various structural features, precautions to be taken to counteract unsuitable conditions, significance of discontinuities on the dam site and treatment giving to such structures.

Module 8:Rock Mechanics- Sub surface investigations in rocks and engineering characteristics of rocks masses; Structural geology of rocks. Classification of rocks, Field & laboratory tests on rocks, Stress deformation of rocks, Failure theories and shear strength of rocks, bearing capacity of rocks.

Practicals:

1. Study of physical properties of minerals.
2. Study of different group of minerals.
3. Study of Crystal and Crystalsystem.
4. Identification of minerals: Silica group: Quartz, Amethyst, Opal; Feldspar group: Orthoclase, Plagioclase; Cryptocrystalline group: Jasper; Carbonate group: Calcite; Element group: Graphite; Pyroxene group: Talc; Mica group: Muscovite; Amphibole group: Asbestos, Olivine, Hornblende, Magnetite, Hematite, Corundum, Kyanite, Garnet, Galena, Gypsum.
5. Identification of rocks (Igneous Petrology): Acidic Igneous rock: Granite and its varieties, Syenite, Rhyolite, Pumice, Obsidian, Scoria, Pegmatite, Volcanic Tuff. Basic rock: Gabbro, Dolerite, Basalt and its varieties, Trachyte.
6. Identification of rocks (Sedimentary Petrology): Conglomerate, Breccia, Sandstone and its varieties, Laterite, Limestone and its varieties, Shales and its varieties.
7. Identification of rocks (Metamorphic Petrology): Marble, slate, Gneiss and its varieties, Schist and its varieties. Quartzite, Phyllite.
8. Study of topographical features from Geological maps. Identification of symbols in maps.

Text/Reference Books:

1. Engineering and General Geology, Parbin Singh, 8th Edition (2010), S K Kataria & Sons.
2. Text Book of Engineering Geology, N. ChennaKesavulu, 2nd Edition (2009), Macmillan Publishers India.
3. Geology for Geotechnical Engineers, J.C. Harvey, Cambridge University Press (1982).

What will I learn?

Students will be able to:

- Use suitable software to examine geology, soil, geologic hazard, and NEHRP data to characterize a geologic site.
- Calculate the bulk properties of rocks and unconsolidated sediments such as density, void ratio, water contents, and unit weights.

- Evaluate rock-mass quality and perform a kinematic analysis.
- Apply the factor of safety equation to solve planar rock slide and toppling problems.
- Perform a grain-size analysis, determine plastic and liquid limits, and classify soils using the Unified Soil Classification System.
- Calculate soil consolidation magnitudes and rates under induced stress conditions.
- Determine soil strength parameters from in situ tests.
- Apply the method of slices and factor of safety equation to solve rotational slide problems.

Outcomes:

Students will understand:

- i) Site characterization and how to collect, analyze, and report geologic data using standards in engineering practice
- ii) The fundamentals of the engineering properties of Earth materials and fluids.
- iii) Rock mass characterization and the mechanics of planar rock slides and toppling.
- iv) Soil characterization and the Unified Soil Classification System.
- v) The mechanics of soils and fluids and their influence on settlement, liquefaction, and soil slope stability.

PCC-CE403	Introduction to Fluid Mechanics	3L:1T:2P	5 Credit
------------------	--	-----------------	-----------------

The objective of this course is to introduce the concepts of fluid mechanics useful in Civil Engineering applications. The course provides a first level exposure to the students to fluid statics, kinematics and dynamics. Measurement of pressure, computations of hydrostatic forces on structural components and the concepts of Buoyancy all find useful applications in many engineering problems. A training to analyse engineering problems involving fluids – such as those dealing with pipe flow, open channel flow, jets, turbines and pumps, dams and spillways, culverts, river and groundwater flow - with a mechanistic perspective is essential for the civil engineering students. The topics included in this course are aimed to prepare a student to build a good fundamental background useful in the application-intensive courses covering hydraulics, hydraulic machinery and hydrology in later semesters.

Module 1: Basic Concepts and Definitions – Distinction between a fluid and a solid; Density, Specific weight, Specific gravity, Kinematic and dynamic viscosity; variation of viscosity with temperature, Newton law of viscosity; vapour pressure, boiling point, cavitation; surface tension, capillarity, Bulk modulus of elasticity, compressibility.

Module 2: Fluid Statics - Fluid Pressure: Pressure at a point, Pascals law, pressure variation with temperature, density and altitude. Piezometer, U-Tube Manometer, Single Column Manometer, U-Tube Differential Manometer, Micromanometers. pressure gauges, Hydrostatic pressure and force: horizontal, vertical and inclined surfaces. Buoyancy and stability of floating bodies.

Module 3: Fluid Kinematics- Classification of fluid flow : steady and unsteady flow; uniform and non-uniform flow; laminar and turbulent flow; rotational and irrotational flow; compressible and incompressible flow; ideal and real fluid flow; one, two and three dimensional flows; Stream line, path line, streak line and stream tube; stream function, velocity potential function. One-, two- and three - dimensional continuity equations in Cartesian coordinates

Module 4: Fluid Dynamics- Surface and body forces; Equations of motion - Euler's equation; Bernoulli's equation – derivation; Energy Principle; Practical applications of Bernoulli's equation: venturimeter, orifice meter and pitot tube; Momentum principle; Forces exerted by fluid flow on pipe bend; Vortex Flow – Free and Forced; Dimensional Analysis and Dynamic Similitude - Definitions of Reynolds Number, Froude Number, Mach Number, Weber *Number and Euler Number*; *Buckingham's* π -Theorem.

Lab Experiments

1. Measurement of viscosity
2. Study of Pressure Measuring Devices
3. Stability of Floating Body
4. Hydrostatics Force on Flat Surfaces/Curved Surfaces
5. Verification of Bernoulli's Theorem
6. Venturimeter
7. Orificemeter
8. Impacts of jets
9. Flow Visualisation–Ideal Flow
10. Length of establishment of flow
11. Velocity distribution in pipes
12. Laminar Flow

Text/Reference Books:

1. Fluid Mechanics and Machinery, C.S.P.Ojha, R. Berndtsson and P. N. Chadrabouli, Oxford University Press, 2010
2. Hydraulics and Fluid Mechanics, P M Modi and S M Seth, Standard BookHouse
3. Theory and Applications of Fluid Mechanics, K. Subramanya, Tata McGrawHill
4. Fluid Mechanics with Engineering Applications, R.L. Daugherty, J.B. Franzini and E.J. Finnemore, International Student Edition, Mc Graw Hill.

At the end of the course, the student will be able to:

- Understand the broad principles of fluid statics, kinematics and dynamics
- Understand definitions of the basic terms used in fluid mechanics
- Understand classifications of fluid flow
- Be able to apply the continuity, momentum and energy principles
- Be able to apply dimensional analysis

PCC-CE404	Surveying and Geo-informatics	3L:1T:2P	5 credits
-----------	-------------------------------	----------	-----------

Objectives

With the successful completion of the course, the student should have the capability to:

- a) describe the function of surveying in civil engineering construction,
- b) Work with survey observations, and perform calculations,
- c) Customary units of measure. Identify the sources of measurement errors and mistakes; understand the difference between accuracy and precision as it relates to distance, differential leveling, and angular measurements,
- d) Be familiar with the principals of recording accurate, orderly, complete, and logical field notes from surveying operations, whether recorded manually or with automatic data collection methods,
- e) Identify and calculate the errors in measurements and to develop corrected values for differential level circuits, horizontal distances and angles for open or closed-loop traverses,
- f) Operate an automatic level to perform differential and profile leveling; properly record notes; mathematically reduce and check leveling measurements,
- g) Effectively communicate with team members during field activities; identify appropriate safety procedures for personal protection; properly handle and use measurement instruments. Be able to identify hazardous environments and take measures to insure one's personal and team safety,
- h) Measure horizontal, vertical, and zenith angles with a transit, theodolite, total station or survey grade GNSS instruments,
- i) Calculate azimuths, latitudes and departures, error of closure; adjust latitudes and departures and determine coordinates for a closed traverse,
- j) Perform traverse calculations; determine latitudes, departures, and coordinates of control points and balancing errors in a traverse. Use appropriate software for calculations and map- ping,
- k) Operate a total station to measure distance, angles, and to calculate differences in elevation. Reduce data for application in a geographic information system,
- l) Work as a team member on a surveying party to achieve a common goal of accurate and timely project completion,
- m) Calculate, design and layout horizontal and vertical curves, Understand, interpret, and prepare plan, profile, and cross-section drawings, Work with cross-sections and topographic maps to calculate areas, volumes, and earthwork quantities.

Syllabus:

Module 1: Introduction to Surveying (8 hours): Principles, Linear, angular and graphical methods, Survey stations, Survey lines- ranging, Bearing of survey lines, Levelling: Plane table surveying, Principles of levelling- booking and reducing levels; differential, reciprocal leveling, profile levelling and cross sectioning. Digital and Auto Level, Errors in levelling; contouring: Characteristics, methods, uses; areas and volumes.

Triangulation and Trilateration (6 Hours): Theodolite survey: Instruments, Measurement of horizontal and vertical angle; Horizontal and vertical control -

methods -triangulation - net- work- Signals. Baseline - choices - instruments and accessories - extension of base lines - corrections - Satellite station - reduction to centre - Intervisibility of height and distances - Trigonometric leveling - Axis single corrections.

Module 2: Curves (6 hours) Elements of simple and compound curves – Method of setting out– Elements of Reverse curve - Transition curve – length of curve – Elements of transition curve - Vertical curves.

Module 3: *Modern Field Survey Systems (8 Hours):* Principle of Electronic Distance Measurement, Modulation, Types of EDM instruments, Distomat, Total Station – Parts of a TotalStation – Accessories –Advantages and Applications,

Field Procedure for total station survey, Errors in Total Station Survey; Global Positioning Systems- Segments, GPS measurements, errors and biases, surveying with GPS, Co-ordinate transformation, accuracy considerations.

Module 4: *Photogrammetry Surveying (8 Hours):* Introduction, Basic concepts, perspective geometry of aerial photograph, relief and tilt displacements, terrestrial photogrammetry, flight planning; Stereoscopy, ground control extension for photographic mapping- aerial triangulation, radial triangulation, methods; photographic mapping- mapping using paper prints, mapping using stereo plotting instruments, mosaics, mapsubstitutes.

Module 5: *Remote Sensing (9 Hours):* Introduction –Electromagnetic Spectrum, interaction of electromagnetic radiation with the atmosphere and earth surface, remote sensing data acquisition: platforms and sensors; visual image interpretation; digital imageprocessing.

Text/Reference Books:

- 1 Madhu, N, Sathikumar, R and Satheesh Gobi, Advanced Surveying: Total Station, GIS and Remote Sensing, Pearson India,2006.
- 2 Manoj, K. Arora and Bajtia, Geomatics Engineering, Nem Chand & Bros,2011
- 3 Bhavikatti, S.S., Surveying and Levelling, Vol. I and II, I.K. International,2010
- 4 Chandra, A.M., Higher Surveying, Third Edition, New Age International (P) Limited, 2002.
- 5 Anji Reddy, M., Remote sensing and Geographical information system, B.S. Publications,2001.
- 6 Arora, K.R., Surveying, Vol.-I, II and III, Standard Book House, 2015.

Outcomes:

The course will enable the students to:

- Apply the knowledge, techniques, skills, and applicable tools of the discipline to engineering and surveyingactivities
- Translate the knowledge gained for the implementation of Civil infrastructure facilities
- Relate the knowledge on Surveying to the new frontiers of science

like Hydrographic surveying, Electronic Distance Measurement, Global Positioning System, Photogrammetry and RemoteSensing.

PCC-CE405	Materials, Testing & Evaluation	1L:1T:2P	3 credits
------------------	--	-----------------	------------------

The objective of this Course is to deal with an experimental determination and evaluation of mechanical characteristics and advanced behavior of metallic and non-metallic structural materials. The course deals with explanation of deformation and fracture behavior of structural materials. The main goal of this course is to provide students with all information concerning principle, way of measurement, as well as practical application of mechanical characteristics.

- Make measurements of behavior of various materials used in CivilEngineering.
- Provide physical observations to complement conceptslearnt
- Introduce experimental procedures and common measurement instruments, equipment,devices.
- Exposure to a variety of established material testing procedures andtechniques
- Different methods of evaluation and inferences drawn fromobservations

The course reviews also the current testing technology and examines force applications systems, force measurement, strain measurement, important instrument considerations, equipment for environmental testing, and computers applications for materials testing provide an introductory treatment of *basic skills in material engineering towards (i) selecting material for the design, and (ii) evaluating the mechanical and structural properties of material, as well as the knowledge necessary for a civil engineer*. The knowledge acquired lays a good foundation for analysis and design of various civil engineering structures/systems in a reliable manner.

What will Ilearn?

- Different materials used in civil engineeringapplications
- Planning an experimental program, selecting the test configuration, selecting thetest specimens and collecting rawdata
- Documenting the experimental program including the test procedures, collecteddata, method of interpretation and finalresults
- Operating the laboratory equipment including the electronic instrumentation, the test apparatus and the data collectionsystem
- Measuring physical properties of common structural and geotechnical construction materials
- Interpreting the laboratory data including conversion of the measurements into engineering values and derivation of material properties (strength and stiffness)from the engineeringvalues
- Observing various modes of failure in compression, tension, andshear
- Observing various types of material behavior under similar loadingconditions

Syllabus

Module 1: *Introduction to Engineering Materials covering, Cements, M-Sand, Concrete (plain, reinforced and steel fiber/ glass fiber-reinforced, light-weight concrete, High Performance Concrete, Polymer Concrete) Ceramics, and Refractories, Bitumen and asphaltic materials, Timbers, Glass and Plastics, Structural Steel and other Metals, Paints and Varnishes, Acoustical material and geo-textiles, rubber and asbestos, laminates and adhesives, Graphene, Carbon composites and other engineering materials including properties and uses of these*

Module 2: *Introduction to Material Testing covering, What is the “Material Engineering”?*

Mechanical behavior and mechanical characteristics; Elasticity – principle and characteristics; Plastic deformation of metals; Tensile test – standards for different material (brittle, quasi-brittle, elastic and so on) True stress – strain interpretation of tensile test; hardness tests; Bending and torsion test; strength of ceramic; Internal friction, creep – fundaments and characteristics; Brittle fracture of steel – temperature transition approach; Background of fracture mechanics; Discussion of fracture toughness testing – different materials; concept of fatigue of materials; Structural integrity assessment procedure and fracture mechanics

Module 3: *Standard Testing & Evaluation Procedures covering, Laboratory for mechanical testing; Discussion about mechanical testing; Naming systems for various irons, steels and nonferrous metals; Discussion about elastic deformation; Plastic deformation; Impact test and transition temperatures; Fracture mechanics – background; Fracture toughness – different materials; Fatigue of material; Creep.*

Tutorials from the above modules covering, understanding i) Tests & testing of bricks, ii) Tests & testing of sand, iii) Tests & testing of concrete, iv) Tests & testing of soils, v) Tests & testing of bitumen & bituminous mixes, vi) Tests & testing of polymers and polymer based materials, vii) Tests & testing of metals & viii) Tests & testing of other special materials, composites and cementitious materials. Explanation of mechanical behavior of these materials.

Practicals:

- Gradation of coarse and fine aggregates
- Different corresponding tests and need/application of these tests in design and quality control
- Tensile Strength of materials & concrete composites
- Compressive strength test on aggregates
- Tension I - Elastic Behaviour of metals & materials
- Tension II - Failure of Common Materials
- Direct Shear – Frictional Behaviour
- Concrete I - Early Age Properties
- Concrete II - Compression and Indirect Tension
- Compression – Directionality
- Soil Classification
- Consolidation and Strength Tests
- Tension III – Heat Treatment
- Torsion Test
- Hardness Tests (Brinnel's and Rockwell)

- Tests on closely coiled and open coiled springs
- Theories of Failure and Corroboration with Experiments
- Tests on unmodified bitumen and modified binders with polymers
- Bituminous Mix Design and Tests on bituminous mixes – Marshall method
- Concrete Mix Design as per BIS

Text/Reference Books:

1. Chudley, R., Greeno (2006), 'Building Construction Handbook' (6th ed.), R. Butter-worth-Heinemann
2. Khanna, S.K., Justo, C.E.G and Veeraragavan, A, ' Highway Materials and Pavement Testing', Nem Chand & Bros, Fifth Edition
3. Various related updated & recent standards of BIS, IRC, ASTM, RILEM, AASHTO, etc. corresponding to materials used for Civil Engineering applications
4. Kyriakos Komvopoulos (2011), Mechanical Testing of Engineering Materials, Cognella
5. E.N. Dowling (1993), Mechanical Behaviour of Materials, Prentice Hall International Edition
6. American Society for Testing and Materials (ASTM), *Annual Book of ASTM Standards* (post 2000)
7. Related papers published in international journals

Measurable Outcomes:

One should be able to:

- Calibrate electronic sensors
- Operate a data acquisition system
- Operate various types of testing machines
- Configure a testing machine to measure tension or compression behavior
- Compute engineering values (e.g. stress or strain) from laboratory measures
- Analyze a stress versus strain curve for modulus, yield strength and other related attributes
- Identify modes of failure
- Write a technical laboratory report

PCC-CE406	Structural Engineering	3L:1T:2P	5 credits
------------------	-------------------------------	-----------------	------------------

Objectives:

This course aims at providing students with a solid background on principles of structural engineering design. Students will be exposed to the theories and concepts of both concrete and steel design and analysis both at the element and system levels. Hands-on design experience and skills will be gained and learned through problem sets and a comprehensive design project. An understanding of

real-world open-ended design issues will be developed. Weekly recitations and project discussions will be held besides lectures.

Module 1: Introduction- concepts of energy principles, safety, sustainable development in performance; what makes a structure; principles of stability, equilibrium; what is a structural engineer, role of engineer, architect, user, builder; what are the functions' what do the engineers design, first principles of process of design

Module 2: Planning and Design Process; Materials, Loads, and Design Safety; Behaviour and Properties of Concrete and Steel; Wind and Earthquake Loads

Module 3: *Materials and Structural Design Criteria:* Introduction to the analysis and design of structural systems. Analyses of determinate and indeterminate trusses, beams, and frames, and design philosophies for structural engineering. Laboratory experiments dealing with the analysis of determinate and indeterminate structures;

Module 4: *Design of Structural Elements;* Concrete Elements, Steel Elements, Structural Joints; Theories and concepts of both concrete and steel design and analysis both at the element and system levels. Approximate Analysis Methods as a Basis for Design; Design of Reinforced Concrete Beams for Flexure; Design of Reinforced Concrete Beams for Shear; Bond, Anchorage, and Serviceability; Reinforced Concrete Columns; Reinforced Concrete Slabs; Introduction to Steel Design; Tension Members and Connections; Bending Members; Structural Systems

Module 5: *System Design Concepts;* Special Topics that may be Covered as Part of the Design Project Discussions; Cable Structures; Prestressed Concrete Bridges; Constructability and Structural Control; Fire Protection

Text/Reference Books:

1. Nilson, A. H. *Design of Concrete Structures*. 13th edition. McGraw Hill, 2004
2. McCormac, J.C., Nelson, J.K. Jr., *Structural Steel Design*. 3rd edition. Prentice Hall, N.J., 2003.
3. Galambos, T.V., Lin, F.J., Johnston, B.G., *Basic Steel Design with LRFD*, Prentice Hall, 1996
4. Segui, W. T., *LRFD Steel Design*, 2nd Ed., PWS Publishing, Boston.
5. Salmon, C.G. and Johnson, J.E., *Steel Structures: Design and Behavior*, 3rd Edition, Harper & Row, Publishers, New York, 1990.
6. MacGregor, J. G., *Reinforced Concrete: Mechanics and Design*, 3rd Edition, Prentice Hall, New Jersey, 1997.
7. Nawy, E. G., *Reinforced Concrete: A Fundamental Approach*, 5th Edition, Prentice Hall, New Jersey.
8. Wang C-K. and Salmon, C. G., *Reinforced Concrete Design*, 6th Edition, Addison Wesley, New York.
9. Nawy, E. G. *Prestressed Concrete: A Fundamental Approach*, Prentice Hall, NJ, (2003).
10. Related Codes of Practice of BIS
11. Smith, J. C., *Structural Analysis*, Harpor and Row, Publishers, New York.
12. W. McGuire, R. H. Gallagher and R. D. Ziemian. "Matrix Structural Analysis", 2nd Edition, John Wiley and Sons, 2000.

13. NBC, *National Building Code*, BIS(2017).
14. ASCE, *Minimum Design Loads for Buildings and Other Structures*, ASCE 7-02, American Society of Civil Engineers, Virginia,2002.

Outcomes:

- The students will be able to apply their knowledge of structural mechanics in addressing design problems of structural engineering.
- They will possess the skills to solve problems dealing with different loads and concrete and steel.
- They will have knowledge in structural engineering.

PCC-CE407	Mechanics of Materials	3L:0T:0P	3 credits
------------------	-------------------------------	-----------------	------------------

The objective of this Course is to introduce to continuum mechanics and material modeling of engineering materials based on first energy principles: deformation and strain; momentum balance, stress and stress states; elasticity and plasticity bounds; plasticity and yield design. The overarching theme is a unified mechanistic language using thermodynamics, which allows understanding, modelling and design of a large range of engineering materials. The subject of mechanics of materials involves analytical methods for determining the strength, stiffness (deformation characteristics), and stability of the various members in a structural system. The behavior of a member depends not only on the fundamental laws that govern the equilibrium of forces, but also on the mechanical characteristics of the material. These mechanical characteristics come from the laboratory, where materials are tested under accurately known forces and their behavior is carefully observed and measured (learnt in the previous course on Materials, Testing & Evaluation). For this reason, mechanics of materials is a blended science of experiment and Newtonian postulates of analytical mechanics.

What will I learn?

- Understand the deformation and strains under different load action and response in terms of forces and moments
- Understand the behaviour under different loading actions
- Application of engineering principles to calculate the reactions, forces and moments
- Understand the energy methods used to derive the equations to solve engineering problems
- Make use of the capabilities to determine the forces and moments for design

Syllabus

Module 1: *Deformation and Strain* covering description of finite deformation, Infinitesimal deformation; Analysis of statically determinate trusses; Stability of dams, retaining walls and chimneys; Stress analysis of thin, thick and compound cylinder;

Module 2:Generalized state of stress and strain: Stress and strain tensor, Yield criteria and theories of failure; Tresca, Von-Mises, Hill criteria, Heigh-Westerguard's stress space.

Module 3:Momentum Balance and Stresses covering Forces and Moments Transmitted by Slender Members, Shear Force and Bending Moment Diagrams, Momentum Balance, Stress States / Failure Criterion

Module 4:Mechanics of Deformable Bodies covering Force-deformation Relationships and Static Indeterminacy, Uniaxial Loading and Material Properties, Trusses and Their Deformations, Statically Determinate and Indeterminate Trusses,

Module 5:Force-Stress-Equilibrium covering Multiaxial Stress and Strain

Module 6: Displacement – Strain covering Multiaxial Strain and Multiaxial Stress-strain Relationships

Module 7: Elasticity and Elasticity Bounds covering Stress-strain-temperature Relationships and Thin-walled Pressure Vessels, Stress and strain Transformations and Principal Stress, Failure of Materials,

Module 8:Bending: Stress and Strains; Deflections and Torsion covering Pure Bending, Moment-curvature Relationship, Beam Deflection, Symmetry, Superposition, and Statically Indeterminate Beams, Shear and Torsion, Torsion and Twisting, Thermoelasticity, Energy methods, Variational Methods; Strain energy, elastic, complementary and total strain energy, Strain energy of axially loaded bar, Beam in bending, shear and torsion; General energy theorem, Castiglano's theorem, Maxwell Bettie's reciprocal theorem; Virtual work and unit load method for deflection, Application to problems of beams and frames.

Module 9:Structural stability; Stability of columns, Euler's formula, end conditions and effective length factor, Columns with eccentric and lateral load; Plasticity and Yield Design covering 1D-Plasticity – An Energy Approach, Plasticity Models, Limit Analysis and Yield Design

Text/Reference Books:

1. Norris, C.H. and Wilber, J. B. and Utku, S. "Elementary Structural Analysis" Mc Graw Hill, Tokyo,Japan.
2. Timoshenko, S. and Young, D. H., "Elements of Strength of Materials", DVNC, New York, USA.
3. Kazmi, S. M. A., 'Solid Mechanics" TMH, Delhi,India.
4. Hibbeler, R. C. Mechanics of Materials. 6th ed. East Rutherford, NJ: PearsonPrentice Hall, 2004
5. Crandall, S. H., N. C. Dahl, and T. J. Lardner. An Introduction to the Mechanics of Solids. 2nd. New York, NY: McGraw Hill, 1979
6. Gere, J. M., and S. P. Timoshenko. *Mechanics of Materials*. 5th ed. Boston: PWS Kent Publishing, 1970.
7. Ashby, M. F., and D. R. H. Jones. *Engineering Materials, An*

Introduction to their Properties and Applications. 2nd ed. ButterworthHeinemann.

8. Collins, J. A. *Failure of Materials in Mechanical Design.* 2nd ed. John Wiley & Sons, 1993.
9. Courtney, T. H. *Mechanical Behavior of Materials.* McGraw-Hill, 1990.
10. Hertzberg, R. W. *Deformation and Fracture Mechanics of Engineering Materials.* 4th ed. John Wiley & Sons, 1996.
11. Nash, W. A. *Strength of Materials.* 3d ed. Schaum's Outline Series, McGraw-Hill, 1994.

Outcomes:

At the end of the course, the student will have:

- An ability to apply knowledge of mathematics, science, and engineering
- An ability to design a system, component, or process to meet desired needs
- An ability to identify, formulate, and solve engineering problems
- The broad education necessary to understand the impact of engineering solutions in a global and societal context
- An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.
- An ability to apply principles of engineering, basic science, and math to model, analyze, design and realize physical systems, components or processes