

Subject		Contact hours per week				Evaluation Scheme			
Course No.	Course Title	Lecture L	Practical P	Tutorial T	Credits	Internals	Mid-Sem. Exam.	End-Sem. Exam.	Total
CE-798-S	Dissertation	0	0	14	14	200		400	600
Total		0	0	14	14				600
Grand Total (I+II+III+IV Semester)					60				1900

List of Possible Electives

Subject		Contact hours per week				Evaluation Scheme			
Course No.	Course Title	Lecture L	Practical P	Tutorial T	Credits	Internals	Mid-Sem. Exam.	End-Sem. Exam.	Total
CE-650	Earthquake Resistant Design of Structure	3	0	1	4	30	20	50	100
CE-651	Advanced Structural Analysis	3	0	1	4	30	20	50	100
CE-654	Higher Numerical Analysis	3	0	1	4	30	20	50	100
CE-655	Advanced Construction Materials	3	0	1	4	30	20	50	100
CE-656	Advanced Steel Design	3	0	1	4	30	20	50	100
CE-657	Tall Building	3	0	1	4	30	20	50	100
CE-659	Construction Planning and Management	3	0	1	4	30	20	50	100
CE-661	Advance Concrete Design	3	0	1	4	30	20	50	100
CE-662	Plates and Shells	3	0	1	4	30	20	50	100
CE-664	Disaster Mitigation and Management	3	0	1	4	30	20	50	100
CE-665	Advanced Soil Mechanics and Foundation Engineering	3	0	1	4	30	20	50	100

Course No.	Course Title	Course Type	Credits	Contact Hours		
				L	P	T
CE 650	Earthquake Resistant Design of Structures	DC	4	3	0	1

Unit 1 Structural Systems

Types of structural systems; types of loads; methods of analysis; stability of tall structures; selection of foundation for tall buildings

Unit 2 Wind Effects on Tall Structures

Bluff body aerodynamics; aero-elastic phenomena; wind directionality effects; structural response and design considerations; standard provisions for wind loading.

Unit 3 Earthquake Effects on Tall Structures

Introduction to earthquake engineering and earthquake resistant design of buildings; earthquake motion and response; general principles and design criteria for buildings; codal provisions; aseismic design of structures; dynamic analysis; effect of torsion; design of stack like structures; earthquake forces in tall buildings.

Unit 4 Shear Walls

Shear in buildings; need of shear walls; location of shear walls in buildings; analysis and design of shear walls.

Text Books and Reference Materials

1. Wind Effects on Structures, Emil Simiu and R. H. Scanlan, John Wiley & Sons, Inc.
2. Wind Forces in Engineering, Peter Sachs, Pergamon Press, Oxford.
3. Elements of Earthquake Engineering, Jai Krishna and A. R. Chandrasekaran, Sarita Prakashan, Meerut.
4. Advanced Reinforced Concrete Design, P.C. Verghese, PHI Learning Pvt. Ltd., New Delhi.
5. Reinforced Concrete: Limit State Design, A.K. Jain, Nem Chand & Bros., Roorkee.
6. Analysis of Shear-walled Buildings, S. M. A. Kazimi and R. Chandra, Tata Steel Research Foundation in India, Calcutta.
7. IS: 875- 1987 Part 1 Dead Load – Code of Practice for Design Loads (Other Than Earthquake) for Buildings and Structures, BIS.
8. IS: 875- 1987 Part 2 Imposed Load – Code of Practice for Design Loads (Other Than Earthquake) for Buildings and Structures, BIS.
9. IS: 875- 1987 Part 3 Wind Load – Code of Practice for Design Loads (Other Than Earthquake) for Buildings and Structures, BIS.
10. IS: 1893- 1984 – Criteria for Earthquake Resistant Design of Structures, BIS.
11. IS: 1893 (Part 1) - 2002 – Criteria for Earthquake Resistant Design of Structures, BIS.
12. IS: 13920- 1993 – Code of Practice for Ductile Detailing of Reinforced Concrete Structures Subjected to Seismic Forces, BIS.
13. Structural Analysis and Design of Tall Buildings, B.S. Taranath, McGrawHills.
14. Structural Design of Multistoreyed Buildings, U.H. Varyani, South Asian Publishers Pvt. Ltd., New Delhi.
15. Design of Building Frames, J. S. Gero and H. J. Cowan, Applied Science Publishers, London.
16. Structural Design of Tall Concrete and Masonry Buildings, Eds. J. G. Mac Gregor and I. Lyse, Council on Tall Buildings and Urban Habitat, ASCE.

Course No.	Course Title	Course Type	Credits	Contact Hours		
				L	P	T
CE 651	Advanced Structural Analysis	DC	4	3	0	1

Unit 1

Introduction to Matrix methods in skeletal structural analysis: force and displacement methods.

Unit 2

Application of force method to plane and space frames problems.

Unit 3

Application of displacement method to plane and space frames problems.

Unit 4

Analysis of Frames, Organization of computation, programming considerations. Non-linear analysis due to plasticity in frames.

Text Books and Reference Materials

1. Pundit and Gupta, "Structural Analysis- A Matrix Approach", Tata McGrawHill Publishing Company Limited. NewDelhi
2. C.S. Reddy, "Basic Structural Analysis" Tata McGrawHill Education Publishing Company Limited. New Delhi
3. DevdasMenon, "Advanced Structural Analysis", Narosa Publishing House,2009.
4. AsslamKassimali, "Matrix Analysis of Structures", Brooks/Cole Publishing Co., USA,1999.
5. Amin Ghali, Adam M. Neville and Tom G. Brown, "Structural Analysis: A Unified Classical and Matrix Approach", Sixth Edition, 2007, Chapman &Hall.
6. DevdasMenon, "Structural Analysis", Narosa Publishing House,2008.
7. R.C. Hibbeler, Structural Analysis, Prentice Hall,1999.
8. Web links toe-learning:nptel
9. Web based learning, Journal papers,etc.

Course No.	Course Title	Course Type	Credits	Contact Hours		
				L	P	T
CE 654	Higher Numerical Analysis	DC	4	3	0	1

Unit 1

Types of errors, General formula for errors, order of approximation. Nonlinear equations: Classification of Methods, Approximate values of roots, Bisection Method, RegulaFalsi Method, Newton Raphson Method, Fixed Point iteration, Mullers Method. Use built in functions in MATLAB software to solve problems.

Unit 2

Linear Systems of Equations: Direct Method - Matrix Inversion Method, Gauss Elimination Method, Gauss Jordan Elimination Method, Cholesky Method.

Iterative Methods- Jacobi Iteration Method, Gauss Seidel Method. Eigen value problem. Use built in functions in MATLAB software to solve problems. Interpolation and Approximation: Lagrange and Newton Interpolation, Finite difference operators. Use built in functions in MATLAB software to solve problems.

Unit 3

Numerical solution of Ordinary: Introduction, solution by Taylor's series, Picard's method of successive approximations, And Euler's method: Error estimates for the Euler method,

modified Euler's method, Runge-Kutta methods, simultaneous and higher order equations using Taylor's series, Picard's method of successive approximations, Euler's method, Boundary Value Problems: Finite Difference method.

Unit 4

Numerical solution of Partial Differential Equations: Introduction, Finite Difference Approximation to derivatives, Laplace's, Parabolic Equations and Hyperbolic Equation: Jacobi's method, Gauss Seidel method, Iterative methods for the solution of equations, Variational and weighted residual methods, Introduction of FEM.

Text Books and Reference Materials

1. Numerical Analysis: Goel & Mittal
2. Applied Numerical Analysis: Gerald & Wheatley
3. Numerical Methods for Engineers: Chapra & Canale
4. Introductory Methods of Numerical Analysis: Sastry
5. Numerical Methods: Jain and Jain

Course No.	Course Title	Course Type	Credits	Contact Hours		
				L	P	T
CE 655	Advanced Construction Materials	DE	4	3	0	1

Unit 1

Timber: Definition, Classification, Growth and Structure of timber, Characteristics, Defects, Seasoning, Preservation, Veneers, Plywood, Boards, IS Codes

Steel: Types, Composition and Properties of Structural Steel, Advantages and Disadvantages of Steel Structures, IS Codes

Gypsum: Occurrence, Physical Properties, Resources in India, Alabaster, Uses. Glass, Ceramic Tiles

Unit 2

Plastics: Definition, History, Classification, Polymerization, Properties of Plastics, Applications in Building Industry, IS Codes

Paints: Classification, Composition of Oil Paints, Characteristics of Good Paints, Defects in Painting, Enamel Paints, Distempers

Varnishes: Composition, Qualities of Good Varnish, Different Kinds of Varnish, French Polish or Spirit Polish, IS Code.

Unit 3

Fibre reinforced concrete: Fibres used in FRC, advantages and disadvantages of FRC over conventional reinforced concrete, factors effecting properties, relative fibre matrix stiffness, volume of fibres, aspect ratio of fibres, orientation of fibres, workability, size of coarse aggregate, mixing, application, Glass fibre reinforced cement: current developments in FRC, high fibre volume micro fibre system, slurry infiltrated fibre concrete, polymer concrete, behavior of FRC under Tension, compression and shear.

Unit 4

Ferro cement : Definition of ferrocement, applications of ferrocement, materials used in ferrocement, parameters and properties of materials used in ferrocement, cement mortar mix, skeletal steel, steel mesh reinforcement, fibre reinforced polymeric meshes, advantages of FRP, disadvantages of FRP, behavior of ferrocement in tension, advantages of ferrocement, difference between ferrocement and reinforced cement concrete: Physical and Mechanical properties, Concrete and other cementitious composite materials.

Text Books and Reference Materials

1. Santha Kumar, A.R., "Concrete Technology", Oxford, University Press.
2. Duggal, S.K., "Building Materials", New Age International Publishers.
3. Shetty, M.S., "Concrete Technology", SCC Ltd., New Delhi.
4. Neville, A.M., "Properties of Concrete", Longman, India.

Course No.	Course Title	Course Type	Credits	Contact Hours		
				L	P	T
CE-656	Advanced Steel Design	DC	4	3	0	1

Unit 1 Steel Bridges

Loads, classification and design procedures, plate girder bridges and truss girder bridges.

Unit 2 Steel Chimneys

Analysis and design of steel chimneys and elevated steel water tanks.

Unit 3 Towers

Analysis and design of transmission line and microwave towers.

Unit 4 Tubular Sections

Structural behavior of tubular sections, analysis and design of tubular sections, brittle fracture and fatigue

in steel structures, plastic design of steel structure.

Text Books and Reference Materials

1. Design of Steel Structures Vol - II, Dr. Ram Chandra and V. Gehlot, Scientific Publishers, India.
2. Unified Design of Steel Structures, Luis F. Greschwindner, John Wiley and Sons.
3. Ductile design of Steel Structures, Michel Bruneau, Chia-Ming Uang, Rafael E. Sabelli, McGraw Hill Professional.
4. Design of Steel Structures, A. S. Arya & J. L. Ajmani, NemChand & Bros., Roorkee.
5. Design of Steel Structures, M. Raghupati, TMH Pub., New Delhi.
6. Design of Steel Structures, S. M. A. Kazmi & S. K. Jindal, Prentice Hall, New Delhi.
7. Design of Steel Structures, S. K. Duggal, TMH Pub, New Delhi.
8. IS: 800 - 2007, General Construction in Steel - Code of Practice.
9. IS: 802 - 1995, Use Of Structural Steel In Overhead Transmission Line Towers - Code Of Practice, Reaffirmed in 2006
10. IS: 6533 - 1- 1989, Code Of Practice for Design and Construction of Steel Chimneys, Part 1: Mechanical Aspects, Reaffirmed in 2010.
11. IS: 6533 - 2 -1989, Code Of Practice for Design and Construction of Steel Chimneys, Part 2: Structural Aspects.
12. IS: 805 - 1968, Code of Practice for Use of Steel in Gravity Water Tanks
13. Web links to e-learning: nptel
14. Web based learning, Journal Papers, etc.

Course No.	Course Title	Course Type	Credits	Contact Hours		
				L	P	T
CE 657	Tall Buildings	DE	4	3	0	1

Unit 1 Structural Systems

Types of structural systems; types of loads; methods of analysis; stability of tall structures; selection of foundation for tall buildings

Unit 2 Wind Effects on Tall Structures

Bluff body aerodynamics; aero-elastic phenomena; wind directionality effects; structural response and design considerations; standard provisions for wind loading.

Unit 3 Earthquake Effects on Tall Structures

Introduction to earthquake engineering and earthquake resistant design of buildings; earthquake motion and response; general principles and design criteria for buildings; codal provisions; aseismic design of structures; dynamic analysis; effect of torsion; design of stack like structures; earthquake forces in tall buildings.

Unit 4 Shear Walls

Shear in buildings; need of shear walls; location of shear walls in buildings; analysis and design of shear walls.

Text Books and Reference Materials

1. Wind Effects on Structures, Emil Simiu and R. H. Scanlan, John Wiley & Sons, Inc.
2. Wind Forces in Engineering, Peter Sachs, Pergamon Press, Oxford.
3. Elements of Earthquake Engineering, Jai Krishna and A. R. Chandrasekaran, Sarita Prakashan, Meerut.
4. Advanced Reinforced Concrete Design, P.C. Verghese, PHI Learning Pvt. Ltd., New Delhi.
5. Reinforced Concrete: Limit State Design, A.K. Jain, Nem Chand & Bros., Roorkee.
6. Analysis of Shear-walled Buildings, S. M. A. Kazimi and R. Chandra, Tor Steel Research

Foundation in India, Calcutta.

7. IS: 875- 1987 Part 1 Dead Load – Code of Practice for Design Loads (Other Than Earthquake) for Buildings and Structures, BIS.
8. IS: 875- 1987 Part 2 Imposed Load – Code of Practice for Design Loads (Other Than Earthquake) for Buildings and Structures, BIS.
9. IS: 875- 1987 Part 3 Wind Load – Code of Practice for Design Loads (Other Than Earthquake) for Buildings and Structures, BIS.
10. IS: 1893- 1984 – Criteria for Earthquake Resistant Design of Structures, BIS.
11. IS: 1893 (Part 1) - 2002 – Criteria for Earthquake Resistant Design of Structures, BIS.
12. IS: 13920- 1993 – Code of Practice for Ductile Detailing of Reinforced Concrete Structures Subjected to Seismic Forces, BIS.
13. Structural Analysis and Design of Tall Buildings, B.S. Taranath, McGrawHills.
14. Structural Design of Multistoreyed Buildings, U.H. Varyani, South Asian Publishers Pvt. Ltd., New Delhi.
15. Design of Building Frames, J. S. Gero and H. J. Cowan, Applied Science Publishers, London.

Course No.	Course Title	Course Type	Credits	Contact Hours		
				L	P	T
CE-659	Construction Planning and Management	DC	4	3	0	1

Unit 1 Construction organization

Overview of construction, development and organization of projects, Construction organization structure, Construction finance management, scope of financial management, working capital management, capital investment decision.

Unit 2 Construction materials management

Economy in material management, inventory management and control, purchase and store management, specialized buying and vendors management.

Unit 3 Construction equipment management

Equipment performance characteristics, selection, planning and matching of construction equipment, equipment management, construction human resources management; introduction to human resource management, labor legislation, industrial relations, women in construction.

Unit 4 Construction contract management

Legal aspects of contract, contract procedures and document, important contract clauses, quality control during construction; Construction accounting; nature and role of accounting, accounting process and book of accounts, accounting conventions and final account, inventory valuation and depreciation

Text Books and Reference Materials

1. **Antill, James M., Woodhead, Ronald W.**, "Critical path methods in construction practice", John Wiley, NY,USA.
2. *Peurifoy*, Schexnayder and Shapira, "Construction planning, equipments and methods", McGraw Hill, Tokyo,Japan.
3. B. Sengupta and H. Guha, "Construction management and planning", Tata McGraw Hill, New Delhi, India.
4. Patil B. S., "Civil engineering contracts and estimates (vol-1 and vol-2)", Orient Longman limited, New Delhi, India.
5. P. K. Joy, "Hand book of construction management", Macmillan India limited, New Delhi, India.
6. Mark Saunders, "Research methods for business students", Pearson Educationlimited.

Course No.	Course Title	Course Type	Credit s	Contact Hours		
				L	P	T
CE661	Advanced Concrete Design	DC	4	3	0	1

Unit 1

Limit state design: Basic concepts and philosophies, design of RC members in flexure, shear and torsion, members subjected to combined stresses, slender column, safety and serviceability, control of cracks and deflections, design of RC framed structures with ductile detailing.

Unit 2

Yield line analysis of slabs, yield line mechanism, equilibrium and virtual work methods, Hillerberg's strip method.

Unit 3

Prestressed Concrete, Design of pre-stressed members for bending, shear, torsion and bond, End blocks.

Unit 4

Prestressed continuous beams and frames, slab and grid floor, tension and compression members, circular pre-stressing, pipes, tanks and special structures.

Text Books and Reference Materials

1. Karve and Shah "Limit State Theory and Design of reinforced Concrete" VGP, Pune,India.
2. Pillai and Menon "Reinforced Concrete Design" TMH, New Delhi,India.
3. Verghese, P. C. "Advanced Reinforced Concrete Design" PHI, Delhi,India.
4. Winter, G. "Design of Concrete Structures" McGraw Hill, Tokyo,Japan.
5. Evans and Cook "Reinforced and Pre- stressed Concrete" TN, London,U.K.
6. Lin, T. H. and Burns, H. N., "Design of Pre-Stressed Concrete Structures", Wiley,Canada.
7. Jain, A. K. "Reinforced concrete-limit State Design" NCB, Roorkee,India.
8. Raju, N.K. "Pre-Stressed Concrete" TMH, Delhi,India.

Selected B. I.S Codes

1. I. S.:456-2000-Code of Practice for Plain and Reinforced Concrete, BIS, New Delhi,India.
2. I. S.:875 -1987(Part I & II)-Code of Practice for Design Loads(other than earthquake) for Building and Structures, BIS, New Delhi,India.
3. I.S.:1893-1984-Criteria for Earthquake Resistant Design of Structures, BIS, New Delhi,India.
4. I.S.:4326-1993-Code of Practice for Earthquake Resistant Design and Construction of Buildings, BIS, New Delhi,India.
5. I.S.:13920- Ductile detailing of reinforced Concrete Structures subjected to Seismic forces, BIS, New Delhi,India.
6. S.P.:16 -Design Aids for Reinforced Concrete to IS: 456-2000, BIS, New Delhi,India.
7. S.P.:24 -Explanatory Hand Book of I.S. Code for Plain and Reinforced Concrete, BIS, New Delhi,India.
8. S.P.:34 - Hand Book of Concrete Reinforcement and Detailing, BIS, New Delhi,India.
9. I.S.:1343-1980-Code of Practice for Pre-Stressed Concrete, BIS, New Delhi,India.

