

Semester - 2

ADVANCED HEAT & MASS TRANSFER

MTME 201 L T P

3 0 0

BRIEF INTRODUCTION TO DIFFERENT MODES OF HEAT TRANSFER:

Conduction:

General heat Conduction equation-initial and boundary conditions.

Transient heat conduction: Lumped system analysis-Heisler charts-semi infinite solid-use of shape factors in conduction-2D transient heat conduction-product solutions.

FINITE DIFFERENCE METHODS FOR CONDUCTION: 1D & 2D steady state and simple transient heat conduction problems-implicit and explicit methods. **Forced Convection:** Equations of fluid flow-concepts of continuity, momentum equations- derivation of energy equation-methods to determine heat transfer coefficient: Analytical methods-dimensional analysis and concept of exact solution. Approximate method-integral analysis.

EXTERNAL FLOWS: Flow over a flat plate: integral method for laminar heat transfer coefficient for different velocity and temperature profiles. Application of empirical relations to variation geometries for laminar and turbulent flows.

Internal flows: Fully developed flow: integral analysis for laminar heat transfer coefficient- types of flow-constant wall temperature and constant heat flux boundary conditions- hydrodynamic & thermal entry lengths; use of empirical correlations.

FREE CONVECTION: Approximate analysis on laminar free convective heat transfer- boussinesque approximation-different geometries-combined free and forced convection. **Boiling and condensation:** Boiling curve-correlations-Nusselts theory of film condensation on a vertical plate-assumptions & correlations of film condensation for different geometries.

RADIATION HEAT TRANSFER: Radiant heat exchange in grey, non-grey bodies, with transmitting. Reflecting and absorbing media, specular surfaces, gas radiation-radiation from flames.

REFERENCES:

1. Principles of Heat Transfer/Frank Kreith/Cengage Learning
2. Elements of Heat Transfer/E. Radha Krishna/CRC Press/2012
3. Heat Transfer/RK Rajput/S.Chand
4. Introduction to Heat Transfer/SK Som/PHI
5. Engineering Heat & Mass Transfer/Mahesh Rathore/Lakshmi Publications
6. Heat Transfer / Necati Ozisik / TMH
7. Heat Transfer / Nellis & Klein / Cambridge University Press / 2012.
8. Heat Transfer/ P.S. Ghoshdastidar/ Oxford Press
9. Engg. Heat & Mass Transfer/ Sarit K. Das/Dhanpat Rai

COMPUTATIONAL FLUID DYNAMICS

MTME 202 L T P

3 0 0

INTRODUCTION: Finite difference method, finite volume method, finite element method, governing equations and boundary conditions, Derivation of finite difference equations. Solution methods: Solution methods of elliptical equations — finite difference formulations, interactive solution methods, direct method with Gaussian elimination. Parabolic equations-explicit schemes and Von Neumann stability analysis, implicit schemes, alternating direction implicit schemes, approximate factorization, fractional step methods, direct method with tridiagonal matrix algorithm.

Hyperbolic equations: explicit schemes and Von Neumann stability analysis, implicit schemes, multi step methods, nonlinear problems, second order one-dimensional wave equations. Burgers equations: Explicit and implicit schemes, Runge-Kutta method.

FORMULATIONS OF INCOMPRESSIBLE VISCOUS FLOWS: Formulations of incompressible viscous flows by finite difference methods, pressure correction methods, vortex methods.

Treatment of compressible flows: potential equation, Euler equations, Navier-stokes system of equations, flow field-dependent variation methods, boundary conditions, example problems.

FINITE VOLUME METHOD: Finite volume method via finite difference method, formulations for two and three-dimensional problems.

STANDARD VARIATIONAL METHODS: Linear fluid flow problems, steady state problems, Transient problems.

REFERENCES:

1. Computational fluid dynamics/ T. J.C'hung/ Cambridge University press,2002.
2. Text book of fluid dynamics/ **Frank** Choriton/ CBS Publishers & distributors, 1985
3. Numerical heat transfer and fluid flow / Suhas V. Patankar/ Hema shava Publishers corporation & Mc Graw Hill.
4. Computational Fluid Flow and Heat Transfer/ Muralidaran/ Narosa Publications
5. Computational Fluid Dynamics: Basics with applications/John D. Anderson/ Mc Graw Hill.
6. Fundamentals of Computational Fluid Dynamics/Tapan K. Sengupta / Universities Press.
7. Introduction to Theoretical and Computational Fluid Dynamics/C. Pozrikidis /Oxford University Press/2nd Edition

LAB-III

ADVANCED HEAT & MASS TRANSFER LAB

MTME 203 L T P

0 0 3

List of Experiments:

1. Determination of Steffan Boltzman Constant.
2. Determination of LMDT and Effectiveness in a Parallel Flow and Counter Flow Heat Exchangers
3. Experiments on Boiling of Liquid and Condensation of Vapour
4. Experiment on Transient Conduction Heat Transfer
5. Determination of Thermal Conductivity of a Metal Rod.
6. Determination of Overall Heat Transfer Coefficient of a Composite wall.
7. Determination of Effectiveness on a Metallic fin.
8. Determination of Heat Transfer Coefficient in a free Convection on a vertical tube.
9. Determination of Heat Transfer Coefficient in a Forced Convention Flow through a Pipe.
10. Determination of Emissivity of a Surface.

DEPARTMENTAL ELECTIVE – III ADVANCED FINITE ELEMENT ANALYSIS

MTTE-131 L T P

3 0 0

Introduction to FEM, basic concepts, historical back ground, applications of FEM, general description, comparison of FEM with other methods, variational approach, Glerkin's Methods. Co-ordinates, basic element shapes, interpolation function, Virtual energy principle, Rayleigh – Ritz method, properties of stiffness matrix, treatment of boundary conditions, solution of system of equations, shape functions and characteristics, Basic equations of elasticity, strain- displacement relations.

1 -D STRUCTURAL PROBLEMS: Axial bar element – stiffness matrix, load vector, temperature effects, Quadratic shape functions and problems.

ANALYSIS OF TRUSSES : Plane Trusses and Space Truss elements and problems

ANALYSIS OF BEAMS : Hermite shape functions – stiffness matrix – Load vector – Problems.

2-D PROBLEMS: CST, LST, force terms, Stiffness matrix and load vectors, boundary conditions, Isoparametric elements – quadrilateral element, shape functions – Numerical Integration. Finite element modeling of Axi-symmetric solids subjected to Axi-symmetric loading with triangular elements.

3-D PROBLEMS: Tetrahedron element – Jacobian matrix – Stiffness matrix.

SCALAR FIELD PROBLEMS: 1 -D Heat conduction-Slabs – fins - 2-D heat conduction problems –Introduction to Torsional problems.

Dynamic considerations, Dynamic equations – consistent mass matrix – Eigen Values, Eigen vector, natural frequencies – mode shapes – modal analysis.

REFERENCES:

1. The Finite Element Methods in Engineering / SS Rao / Pergamon.
2. Finite Element Methods: Basic Concepts and applications, Alavalapati, PHI
3. Introduction to Finite Elements in Engineering, Chandrupatla, Ashok and Belegundu, Prentice –Hall
4. Finite Element Method – Zienkiewicz / Mc Graw Hill
5. Introduction to Finite element analysis- S.Md.Jalaludeen, Anuradha Publications, print-2012
6. A First Course in the Finite Element Method/Daryl L Logan/Cengage Learning/5th Edition
7. Finite Element Method – Krishna Murthy / TMH

FUELS, COMBUSTION AND ENVIRONMENT

MTTE-132 L T P

3 0 0

FUELS: Detailed classification – Conventional and Unconventional Solid, Liquid, gaseous fuels and nuclear fuels – Origin of Coal – Analysis of coal. Coal – Carborisation, Gasification and liquification – Lignite: petroleum based fuels – problems associated with very low calorific value gases: Coal Gas – Blast Furnace Gas Alcohols and Biogas.

PRINCIPLES OF COMBUSTION: Chemical composition – Flue gas analysis – dew point of products – Combustion stoichiometry. Chemical kinetics – Rate of reaction – Reaction order – Molecularity – Zeroth, first, second and third order reactions - complex reactions – chain reactions. Theories of reaction Kinetics – General oxidation behavior of HC's.

THERMODYNAMICS OF COMBUSTION: Enthalpy of formation – Heating value of fuel – Adiabatic flame Temperature – Equilibrium composition of gaseous mixtures.

LAMINAR AND TURBULENT FLAMES PROPAGATION AND STRUCTURE:
Flame

stability – Burning velocity of fuels – Measurement of burning velocity – factors affecting the burning velocity. Combustion of fuel, droplets and sprays – Combustion systems – Pulverized fuel furnaces – fixed, Entrained and Fluidised Bed Systems.

ENVIRONMENTAL CONSIDERATIONS: Air pollution – Effects on Environment, Human Health etc. Principal pollutants – Legislative Measures – Methods of Emission control.

REFERENCES:

1. Combustion Fundamentals / Roger A strehlow / Mc Graw Hill
2. Fuels and combustion / Sharma and Chander Mohan/ Tata Mc Graw Hill
3. Combustion Engineering and Fuel Technology / Shaha A.K./ Oxford and IBH.
4. Principles of Combustion / Kanneth K.Kuo/ Wiley and Sons.
5. Combustion / Sarkar / Mc. Graw Hill.
6. An Introduction to Combustion / Stephen R. Turns/ Mc. Graw Hill International Edition.

ENERGY MANAGEMENT

MTTE-133 L T P

3 0 0

INTRODUCTION: Principles of energy management. Managerial organization, Functional areas for i) manufacturing industry, ii) Process industry, iii) Commerce, iv) Government, Role of Energy manager in each of these organizations. Initiating, Organizing and managing energy management programs.

ENERGY AUDIT: Definition and concepts. Types of energy audits, Basic energy concepts, Resources for plant energy studies. Data gathering, Analytical techniques. Energy Conservation: Technologies for energy conservation, Design for conservation of energy materials, Energy flow networks. Critical assessment of energy usage. Formulation of objectives and constraints, Synthesis of alternative options and technical analysis of options. Process integration.

ECONOMIC ANALYSIS: Scope, Characterization of an investment project. Types of depreciation, Time value of money. Budget considerations, Risk analysis.

METHODS OF EVALUATION OF PROJECTS: Payback, Annualized costs, Investor's rate of return, Present worth, Internal rate of return, Pros and cons of the common method of analysis, Replacement analysis.

ALTERNATIVE ENERGY SOURCES: SOLAR ENERGY: Types of devices for solar energy collections, Thermal storage system, Control systems. Wind Energy, Availability, Wind Devices, Wind Characteristics, performance of turbines and systems.

REFERENCES:

1. Energy Management Hand Book / W.C. Turner (Ed)
2. Energy Management Principles / CB Smith/ Pergamon Press
3. Energy Management / W.R.Murthy and G.Mc.Kay / BS Publication
4. Management / H.Koontz and Cyril Donnel / McGraw Hill
5. Financial Management / S.C.Kuchhal / Chaitanya Publishing House

EQUIPMENT DESIGN FOR THERMAL SYSTEMS

MTTE-134 L T P

3 0 0

CLASSIFICATION OF HEAT EXCHANGERS: Introduction, Recuperation & regeneration, Tabular heat exchangers, Double pipe, shell & tube heat exchanger, Plate heat Exchangers, Gasketed plate heat exchanger. Spiral plate heat exchanger, Lamella heat exchanger, Extended surface heat exchanger, Plate fin and Tabular fin.

Basic Design Methods of Heat Exchanger: Introduction, Basic equations in design, Overall heat transfer coefficient, LMTD method for heat exchanger analysis, Parallel flow, Counter flow. Multipass, cross flow heat exchanger design calculations:

DOUBLE PIPE HEAT EXCHANGER: Film coefficient for fluids in annulus, fouling factors, Calorific temperature, Average fluid temperature, The calculation of double pipe exchanger, Double pipe exchangers in series parallel arrangements. **Shell & Tube Heat Exchangers:** Tube layouts for exchangers, Baffle heat exchangers, Calculation of shell and tube heat exchangers, Shell side film coefficients, Shell side equivalent diameter, The true temperature difference in a 1 -2 heat exchanger. Influence of approach temperature on correction factor. Shell side pressure drop, Tube side pressure drop, Analysis of performance of 1 -2 heat exchanger and design of shell & tube heat exchangers, Flow arrangements for increased heat recovery, the calculation of 2-4 exchangers.

CONDENSATION OF SINGLE VAPOURS: Calculation of horizontal condenser, Vertical condenser, De-Super heater condenser, Vertical condenser-sub-Cooler, Horizontal Condenser- Sub cooler, Vertical reflux type condenser. Condensation of steam.

VAPORIZERS, EVAPORATORS AND REBOILERS: Vaporizing processes, Forced circulation vaporizing exchanger, Natural circulation vaporizing exchangers, Calculations of a reboiler. **Extended Surfaces:** Longitudinal fins. Weighted fin efficiency curve, Calculation of a Double pipe fin efficiency curve. Calculation of a double pipe finned exchanger, Calculation of a longitudinal fin shell and tube exchanger.

DIRECT CONTACT HEAT EXCHANGER: Cooling towers, relation between wet bulb & dew point temperatures, The Lewis number and Classification of cooling towers, Cooling tower internals and the roll of fill, Heat Balance. Heat Transfer by

simultaneous diffusion and convection, Analysis of cooling tower requirements, Design of cooling towers, Determination of the number of diffusion units, Calculation of cooling tower performance.

REFERENCES:

1. Process Heat Transfer/D.Q.Kern/ TMH
2. Heat Exchanger Design/ A.P.Fraas and M.N.Ozisicj/ John Wiely & sons, New York.
3. Cooling Towers / J.D.Gurney and I.A. Cotter/ Maclarens

DEPARTMENTAL ELECTIVE-IV OPTIMIZATION TECHNIQUES &

DESIGN OF EXPERIMENTS

MTTE-141 L T P

3 0 0

SINGLE VARIABLE NON-LINEAR UNCONSTRAINED OPTIMIZATION: One dimensional Optimization methods, Uni-modal function, elimination method, Fibonacci method, golden section method, interpolation methods- quadratic & cubic interpolation methods.

MULTI VARIABLE NON-LINEAR UNCONSTRAINED OPTIMIZATION: Direct search

method – Univariant Method – pattern search methods – Powell’s – Hook – Jeeves, Rosenbrock search methods – gradient methods, gradient of function, steepest decent method, Fletcher reeves method. **Variable metric method.**

GEOMETRIC PROGRAMMING: Polynomials – arithmetic – geometric inequality – unconstrained G.P – constrained G.P

DYNAMIC PROGRAMMING: Multistage decision process, principles of optimality, examples, conversion of final problem to an initial value problem, application of dynamic programming, production inventory. Allocation, scheduling replacement.

LINEAR PROGRAMMING: Formulation – Sensitivity analysis. Change in the constraints, cost coefficients, coefficients of the constraints, addition and deletion of

variable, constraints. **Simulation:** Introduction – Types – Steps – application – inventory – queuing – thermal system.

INTEGER PROGRAMMING: Introduction – formulation – Gomory cutting plane algorithm – Zero or one algorithm, branch and bound method.

STOCHASTIC PROGRAMMING: Basic concepts of probability theory, random variables – distributions – mean, variance, Correlation, co variance, joint probability distribution – stochastic linear, dynamic programming.

REFERENCES:

1. Optimization theory & Applications/ S.S Rao/ New Age International
2. Introductory to operation research/Kasan & Kumar/Springer
3. Optimization Techniques theory and practice / M.C Joshi, K.M Moudgalya/ Narosa Publications.
4. Operation Research/H.A. Taha/TMH
5. Optimization in operations research/R.L Rardin
6. Optimization Techniques/Benugundu & Chandraputla/Person Asia
7. Optimization Techniques /Benugundu & Chandraputla / Pearson Asia

EXPERIMENTAL TECHNIQUES IN FLUID FLOW & HEAT TRANSFER

MTTE-142 L T P

3 0 0

WHAT DO WE MEASURE, AND WHY: Introduction, the need for flow measurements, what do we need to know?, examples of fluid mechanics measurements, measurement of sediment load in a stream, wind-tunnel studies, propeller vibration, aeroacoustics, turbulent mixing layer, summery, outline of the theory of fluid mechanics, inviscid flow, viscous flow and turbulence, spatial and temporal resolution in measurements, correlation of data and signal analysis, classification of deterministic data, random data and signal analysis.

PHYSICAL LAWS OF FLUID MECHANICS AND THEIR APPLICATION TO

MEASUREMENT TECHNIQUES: Introduction, similarity analysis, inviscid, incompressible fluids, inviscid, compressible fluids, viscous fluids.

DIFFERENTIAL PRESSURE MEASUREMENT: Introduction, uses of differential pressure measurements, principles involved in measuring velocities with differential pressure, pitot-static and impact pressure tubes, multidimensional mean-velocity measurement, physical errors in the measurement of steady pressure, types of transducers for measuring unsteady pressure, condenser microphones, Piezoelectric transducers, strain-gage transducers, mechanical transduction of time-varying pressure signals, physical errors in the measurement of unsteady pressures, spatial resolution errors, aerodynamic interference, acoustic reflection, special techniques with microphone arrays.

THERMAL ANEMOMETERS: Introduction, strengths, limitations, and comparisons with laser velocimeters, hot wire sensors, probe supports and mounting, control circuit, calibration of a hot-wire anemometer, heat transfer from fine wires, high speed flow, conduction to walls, conduction to the supports, angle sensitivity and support interference, measuring mean velocity, velocity components, and temperature, one component using a single hot wire, two components using an X probe, three components, multiposition measurements, nonisothermal flows, dynamics of the constant temperature hot-wire anemometer, frequency response of a constant temperature hot wire anemometer, optimization and electronic testing of the dynamics of the hot wire anemometer, large velocity fluctuations, dynamic effects of conduction losses to the supports, attenuation of heat waves across the thermal boundary layer of the sensor, finite resolution due to finite sensor size, noise in constant temperature thermal anemometry, film sensors, cylindrical film sensors, noncylindrical film sensors, constant current operation, other measurement techniques and applications using the constant temperature anemometer, aspirating probe, pressure measurements, total flow, split film sensors, conclusion.

LASER VELOCIMETRY: Introduction, basic principles, doppler shift of light scattered by small particles, optical heterodyne detection, basic optical systems, the dual beam LDV, practical dual-beam optics, characteristics of the dual-beam signal, the reference beam LDV, multivelocity component systems, photodetectors, detector characteristics, photoemission statistics, shot noise signal to noise ratio effects, scatters particles, properties of the random light flux, signal representation random doppler light flux, statistical properties of $g(x, t, D)$, correlation and power spectrum, burst density, high burst density signals (N_1), signal processors, amplitude correlators, photon correlators, spectrum analysis,

frequency trackers, frequency counters, selection of signal processors, data process, processing data from time-averaging processors, processing data from time-resolving signal processors, fringe biasing.

VOLUME FLOW MEASUREMENTS: Introduction, classification of metering devices, selected meter performance characteristics, orifice meters, venturi tubes and flow nozzles, elbow meters, pitot tubes, laminar flow meters, turbine meters, rotameters, target meters, thermal flowmeters, weirs and flumes, magnetic flowmeters, acoustic flowmeters, vortex-shedding meters, laser flowmeters, coriolis-acceleration flowmeters, flow conditioning devices, proving- primary and secondary standards, liquid flow; static weighing procedure, liquid flow; dynamic weighing procedure, gas flow: static gas flow: dynamic procedure, ballistic calibrators. NBS facilities and secondary standards, traceability to National flow standards-measurement assurance programs for flow, static traceability, dynamic traceability, measurement assurance programs, the role of flow conditioning in the Artifact package, test program, data analysis.

BOOKS RECOMMENDED

1. Aerodynamic Measurement -MIT Press -Edited by R.C.Din
2. Fluid Mechanics Measurement -Edited by R.J.Goldstein Hemisphere Pub.Corporation

CONVECTIVE HEAT TRANSFER

MTTE-143 L T P

3 0 0

Introduction to Forced, free & combined convection – convective heat transfer coefficient – Application of dimensional analysis to convection – Physical interpretation of dimensionless numbers.

Equations of Convective Heat Transfer: Continuity, Navier-Stokes equation & energy equation for steady state flows – similarity – Equations for turbulent convective heat transfer – Boundary layer equations for laminar, turbulent flows – Boundary layer integral equations.

EXTERNAL LAMINAR FORCED CONVECTION: Similarity solution for flow over an isothermal plate – integral equation solutions – Numerical solutions – Viscous dissipation effects on flow over a flat plate.

External Turbulent Flows: Analogy solutions for boundary layer flows – Integral equation solutions – Effects of dissipation on flow over a flat plate.

Internal Laminar Flows: Fully developed laminar flow in pipe, plane duct & ducts with other cross-sectional shapes – Pipe flow & plane duct flow with developing temperature field – Pipe flows & plane duct flow with developing velocity & temperature fields.

Internal Turbulent Flows: Analogy solutions for fully developed pipe flow – Thermally developing pipe & plane duct flow.

NATURAL CONVECTION: Boussineq approximation – Governing equations – Similarity – Boundary layer equations for free convective laminar flows – Numerical solution of boundary layer equations. Free Convective flows through a vertical channel across a rectangular enclosure

- Horizontal enclosure – Turbulent natural convection.

COMBINED CONVECTION: Governing parameters & equations – laminar boundary layer flow over an isothermal vertical plate – combined convection over a horizontal plate – correlations for mixed convection – effect of boundary forces on turbulent flows – internal flows

- internal mixed convective flows – Fully developed mixed convective flow in a vertical plane channel & in a horizontal duct.

CONVECTIVE HEAT TRANSFER THROUGH POROUS MEDIA: Area weighted velocity

- Darcy flow model – energy equation – boundary layer solutions for 2-D forced convection – Fully developed duct flow – Natural convection in porous media – filled enclosures – stability of horizontal porous layers.

REFERENCES:

1. Introduction to Convective Heat Transfer Analysis/ Patrick H. Oosthuigen & David Naylor/McGraw Hill
2. Convective Heat & Mass Transfer /Kays & Crawford/TMH

THERMAL AND NUCLEAR POWER PLANTS

INTRODUCTION: Sources of energy, Type of Power plants. Direct energy conversion system, Energy sources in India, Recent developments in power generation, Combustion of coal, Volumetric analysis, Gravimetric analysis. Fuel gas analysis.

Steam power plant: Introduction. General layout of steam power plant, Modern coal. Fired Steam, Steam power plant. Power plant cycle, Fuel Handling, Combustion equipment, Ash handling, Dust collectors.

Steam Generators: Types, Accessories. Feed water heaters, Performance of boiling, Water treatment, Cooling towers. Steam turbines. Compounding of turbines, Steam condensers, Jet and surface condensers.

GAS TURBINE POWER PLANT: Cogeneration. Combined cycle power plant, Analysis, Waste heat recovery, IGCC power plant, Fluidized bed, Combustion, Advantages, Disadvantages.

NUCLEAR POWER PLANT: Nuclear physics, Nuclear Reactor, Classification, Types of reactors, Site selection. Method of enriching uranium. Application of nuclear power plant. Nuclear Power Plant Safety: Bi-Product of nuclear power generation, Economics of nuclear power plant, Nuclear power plant in India, Future of nuclear power.

ECONOMICS OF POWER GENERATION: Factors affecting the economics, Loading factors, Utilization factor, Performance and operating characteristics of power plant, Point economic load sharing, Depreciation. Energy rate, Criteria for optimum loading. Specific economic energy problem.

POWER PLANT INSTRUMENTATIONS: Classification, Pressure measuring instrument, Temperature measurement and Flow Measurement, Analysis of combustion gases, Pollution types, Methods of control.

REFERENCES:

1. Power Plant Engineering / P.K.Naga / TMH
2. Power Plant Engineering / R.K.Rajput/ Lakshmi Publications.
3. Power Plant Engineering / P.C.Sharma/ Kotearia Publications.

ELECTIVE-V

THERMAL MEASUREMENTS AND PROCESS CONTROLS

MTTE 151 L T P

3 0 0

GENERAL CONCEPTS: Fundamental elements of a measuring instrument. Static and dynamic characteristics – errors in instruments – Different methods of measurement and their analysis Sensing elements and transducers. Measurement of pressure – principles of pressure measurement, static and dynamic pressure, vacuum and high pressure measuring – Measurement of low pressure, Manometers, Calibration methods, Dynamic characteristics- design principles.

MEASUREMENT OF FLOW: Obstruction meters, variable area meters. Pressure probes, compressible fluid flow measurement, Thermal anemometers, calibration of flow measuring instruments. Introduction to design of flow measuring instruments.

TEMPERATURE MEASUREMENT: Different principles of Temperature Measurement, use of bimetallic thermometers – Mercury thermometers, Vapor Pressure thermometers, Thermo positive elements, thermocouples in series & parallel, pyrometry, measurement of heat flux, calibration of temperature measuring instruments. Design of temperature measuring instruments.

Level Measurement: Direct & indirect methods, manometric methods, float level meters, electrical conductivity, Capacitive, Ultrasonic, and Nucleonic Methods. Measurement of density

- Hydrometer, continuous weight method, Gamma rays, Gas impulse wheel. Velocity Measurement – Coefficient of viscosity, Ostesld method, free fall of piston under gravity, torque method. Measurement of moisture content and humidity. Measurement of thermal conductivity of solids, liquids and gases.

PROCESS CONTROL: Introduction and need for process control principles, transfer functions, block diagrams, signal flow graphs, open and closed loop control systems – Analysis of First & Second order systems with examples of mechanical and thermal systems. Control System Evaluation – Stability, steady state regulations, transient regulations.

REFERENCES:

1. Measurement System, Application & Design – E.O. Doeblin.
2. Mechanical and Industrial Measurements – R.K. Jain – Khanna Publishers.
3. Mechanical Measurements – Buck & Beckwith – Pearson.
4. Control Systems, Principles & Design, 2nd Edition – M. Gopal – TMH

COMBUSTION TECHNOLOGY**MTTE 152 L T P****3 0 0**

Introduction, Heat of reaction and formation, Adiabatic flame temperature, Chemical equilibrium, Properties of equilibrium, Combustion products of air-fuel mixtures, Chemical kinetics, reaction rates, Law of mass action, Reaction order, Activation energy, Flammability limits, SIT, Features of SI engines combustion processes, Burned and unburned mixture states, Features of CI engine combustion process, Spray structure, atomization, penetration, drop size distribution, evaporation, Ignition delay, Factors affecting delay, Mixing controlled combustion, Engine design variables and heat release rates, Vehicle emissions, Photochemical smog, Formation of NO and NO₂ in SI & CI engines, Formation of CO₂, Unburned HC, Flame quenching, Sources of HC in SI, Oxidation and emission, HC in CI engines, PM composition & Structure, Formation, growth, oxidation, adsorption & condensation. Emission regulations, regulated/unregulated pollutants, Effects of pollutants on human health, Introduction to EGR, EGR system classification, After treatment technologies, TWC, NO_x, adsorber, selective catalytic reduction, formation of particulate matter, Diesel particulate filters, regeneration Measurement & test procedures, Exhaust smoke opacity meters, Bosch smoke meter, NDIR, FID, Chemiluminescence detector, particulate matter measurement, IS codes for engine testing and pollution measurements. Introduction to MPFI, Gasoline direct injection, Key technical features, HCCI combustion. Lubricating oils, properties, additives, engine friction & wear, lubricating oil tribology

Books:

1. Fundamentals of Combustion DP Mishra Prentice Hall of India

ENVIRONMENTAL POLLUTION & ITS CONTROL

Introduction: Nature and extent of pollution problems; Types of pollution. Air Pollution: General nature of air pollution; Air pollutants; Sources of air pollutants; Pollution from stationary sources and its control; Pollution from mobile sources and its control.

Thermal Pollution: Introduction; Effects of thermal pollution on ecology; Thermal plume, regions of plume; Parameters relevant to thermal plume and their limits; Mechanics of condenser water discharge from thermal power plants; Modelling of heated water discharge. Global Atmospheric Change: Introduction; Simple global temperature models; Green House effects, Green house gases; CO₂ and its estimates; Equilibrium temperature increase caused by CO₂, Chloroform carbons and warming and Ozone depletion impacts of CFC's, changes in stratospheric ozone.

Books:

1. Environmental Pollution And Protection Garg, Bansal, Tiwana Deep and Deep Pubs.
2. Environmental Pollution- Hazards And Control R D Gupta Concept Publishing Company
3. Environmental Pollution Compliance H.C. Sharma CBS Publishers
4. Global Effects of Environmental Pollution American Association For The Advancemen luwer Aca

ADVANCED POWER PLANT ENGINEERING

INTRODUCTION TO POWER PLANTS AND BOILERS; Layout of Steam, Hydel, Diesel, MHD, Nuclear and Gas turbine Power Plants Combined Power cycles

– comparison and selection, Load duration Curves Steam boilers and cycles – High pressure and Super Critical Boilers – Fluidised Bed Boilers.

STEAM POWER PLANT: Fuel and ash handling ,Combustion Equipment for burning coal, Mechanical Stokers. Pulveriser, Electrostatic Precipitator, Draught-Different Types, Surface condenser types, cooling Towers.

NUCLEAR AND HYDEL POWER PLANTS : Nuclear Energy-Fission , Fusion Reaction, Types of Reactors, Pressurized water reactor ,Boiling water reactor, Waste disposal and safety Hydel Power plant- Essential elements, Selection of turbines, governing of Turbines- Micro hydel developments.

DIESEL AND GAS TURBINE POWER PLANT: Types of diesel plants, components , Selection of Engine type, applications-Gas turbine power plant- Fuels- Gas turbine material – open and closed cycles- reheating – Regeneration and intercooling – combines cycle.

OTHER POWER PLANTS AND ECONOMICS OF POWER PLANTS; Geo thermal- OTEC- tidel- Pumped storage –Solar central receiver system Cost of electric Energy- Fixed and operating costs-Energy rates- Types tariffs- Economics of load sharing, comparison of various power plants.

TEXT BOOKS:

1. Arora S.C and Domkundwar S, “A Course in Power Plant Engineering”, Dhanpat Rai, 2001.
1. Nag P.K ,”Power Plant Engineering”. Third edition Tata McGraw- Hill , 2007.